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QUADRIMPULSE FLYBACK WITH REVERSION

G. V. Ufimtsev

Quadrimpulse flyback between two points which move along : /41

round coplanar orbits uniformly in the same direction is examined.

Two pulses are applied in flyback from the first point to the se-

cond, two--in reverse flyback. A round orbit, in which the first /42

pulse is applied, will be called the starting orbit; the orbit

which is the target of our flight--the destination orbit. Let us

seek the energetically optimal flyback, considering the fact that

the total flyback time is restricted, and the stay time in the

destination orbit must not be less than some quantity.

Let al be the radius of the starting orbit; a2--the radius

of the destination orbit; pl, el, wl--Keplerian elements of the

flyback ellipse from the starting orbit to the destination orbit.

P2 , e2' w2
--e lem ent s of the ellipse of reverse flyback; k--con-

stant of gravitation of the central field; n1--mean motion of a

point along the starting orbit; n2--mean motion of a point along

the destination orbit; t , . .. . ,t4--moments of pulse application;

Ul0 , u20--initial phases of motion of the first and second oints

between which flyback is effected, corresponding to time t0; vii,
viu, i = 1, 2--true anomalies in ellipses of flyback at instant

of pulse application.

Then the boundary conditions can be written in the form

of the following equations:

p1-al (I +ej cos v,,)=O,
pI-a 2 (1 +e cos vl,,)=0,
P2-a 2 (1 +e cos 2,)= 0,
P2-a (1 +e, cos v,2,) =O,

u'I o+n$ , (t- to)- , -v,=O,
u2o"+n2 (t2-t0)-l- v1K-2=l =0,
U2o 2 (3 , ,-- t 2-- 0 = O

uo +nl (t-to)--w-v 2 2-2l 2 =0, 1
y (p., e,, v ,,)-k (t2-t) =0,
Y (P2, e2,, V9, v,,,)-k (t4-t3) =0,



where l, 12--whole numbers which will be defined later, and func-

tion 4 has the form

p (p, e, v,,, )= " (1 +e cos v)- 2 dv.

----- " (2)

If T --maximum time of entire flyback, and Ts--minimum time

of stay in destination orbit, then limitations on time can be writ-.

ten in the following manner:

To-(t4-tl) -- = 0,

Tn-(t3-t2) + 20;

here T and T are unknownreal numbers.

Let us designate pulses in the order of their sequence by /43

AV i , i = 1, 2, 3, 4. Then

AVVI=V(al, el, pl),

AV 2=V (a2, el, Pt),
AV 3= V (a2, e2, P2),

AV 4=V (a1, e2, P2),

V (a, e, p)=k - I- 2 -
a p a3/2

(4)

The function V provides expression for the pulse in transfer

from a round orbit to an elliptical one and vice versa. The an-

gle between the direction of the pulse and the direction of the

initial velocity can be any size.
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Let us minimize some function F, which reflects energy losses

in effecting flyback, which we will consider symmetrical with re-

spect to the variables ai.AV'. where a.--weights with which are

selected the appropriate pulses. These weights can denote, e.g.,

the portion of the pulse in which fuel is expended. If a portion

of the pulse required for transfer from orbit to orbit is extin-

guished by the resistive medium, then the corresponding ai < 1.

Moreover, we will consider that function F depends on flyback

time (t4 - t1 ) so that

S(5)

The formulated problem is a problem of searching a conven-

tional extremum of. function F. Let us introduce the undefined

coefficients Al, 1 2, "., A8 for the first eight boundary con-

ditions (1), P1' P2--for the two last boundary conditions of (1),

and v1 ' v2--for limitations on time (3) and form function D of

the following form:

D=F + ,L,+ (jj+V (j),6)

where Li , Mj, N. are the left parts of equations (1) and (3).

Then the necessary conditions of the minimum of function F are

written as follows:

O =0, 1=1, 2, ... , 16, (7)

where

y-f(p,, e,, wj, V1H1 Vx, p2,e2, (,2, V2H1 V2X, t, t2 3 t4, To' ).

As a result, we derive a system of equations (1), (3), (7)

consisting of 28 equations with 28 unknowns.

3



Let us write the necessary conditions for the minimum in a /44

more unfolded form

I+ 2 + 1P = 0,

- X1 a COS V 1 n-- 2 a 2 cos +- tL1 01

-X 5-k6=0,

I a2
X2aaej sin v K--, i--I~, (80,

OF 0 f92
p2 + 3 +)4 +112 0,

52, 
2

OP2
OF O-2 0,
(e2 - 3a 2 COS VU2 - 4 a os v 2 K + 12 -de-2

).3aa 2 sin v 2 ,,- -T--12 O,

a2
X4aje2 sin v2K--) 8+ 1 -2 -0O,

OF
v- vl+l k+Xsn=0,

-v 2- 1ik+ X6n 2=0,

'v2 + pk + )17n 2 = 0,

OF v, - tL, k + sX8 = 0,

-2v 2 7 =0.

This implies

OF OF OdV OF 2  .2" etc.
0p 1 Oy ±P l 2 p

and also

y9= f(Pl, e, 0,,, u!), i=1, 2._

Using the properties of function F(5), from equations (8) we can

derive

4



X51
T= - '5,

P2- 1P (9)
dF

, -v1 =n= 5- -kP1 ,

v2 - -n 2x5 -kp 1.

The first, second, sixth and seventh equations of the group /45

of equations (8) can be solved with respect to the undefined co-

efficients i', X2 ' X3' X4. Consequently, we will find that

A, A2  A3 A41- 2 X 3 2 2

A, 2 COS K - l \p a COS 0

OF OF OT a, COS vi +O i
2 = COS i p i aCOS

A. -s -
a l 

COS 2K + - a +- M S V2. e2 '

OF OF / +O 2

A4 = j 2 COS V2'2- 1 k 2 2 COS -2H e 2

A = a2 COS Vl-.a1 COS V'1H, (10)

A2= a1 COS V 2 - 2 COS ,2H.

We should note that this solution is always possible since

Al 0, A2 # 0. Let us assume the contrary. Let, for example,

1 = 0; from the first two equations of (1) it follows that al =

= 2. We will not discuss such cases.

Symmetrical Flybacks

1
Let us take as the origin of the time count 1(tI + t4). Then

t4 tp (11)

We will call the flyback symmetrical, if the following equa-

lities are fulfilled:

5



P- =,P -p,,
e2=el=-e,

(12)

Using formulas (2), (4) and the property of symmetricity of

function F with respect to pulses AVi (all ai we assume equal to

one), it is easy to show the validity of identities

0?1-OT2 OT OY O'P2 0?
OP Op2 -p ' del - e2  e '

AV,=AV,, V 2 ~A AV 3 ,

OF OF I OF OF dF I OF
OP. t 20p eL - e2  2 Oe (13)

Using the identities in (13) for equations (10), we find that

AI~AA A2 =3A3  A'1=-•

(14)

Now, the necessary conditions of the minimum (8), using equa- /46

tions (9), (10) and (14), can be reduced to five equations:

-2 - p aa 2 Sin (V- VK) + (a sin v,-a 2 sin vj),

a a 2 (OF 1 (a 22 sin v- cos v)
2 (a sin v cos v-a sin cos )-

O- e sin v,, sin v,]

F +(a1 sin v-a 2 sin cs)+ v sin , (15)

a2 a aa sin (Vo-VH)±v -± (a2 cos -a cos O,) aa sin (--v,)

+ (a2 sin v,-a, sin v.),

o (p+n), +- v)=0,

T, (kt +n2 )=O.

6



Here, instead of the former variables 1 and A5, new P and

X are introduced according to the formulas

The boundary conditions of (1) are much simplified. Thus,

four first conditions are equal to two:

p= a, (1 +e cos v,),
P=a2 (+ecos v).

(16)

The following four equations produce the same thing.

Getting rid of el and w2 and considering that t0 = 1(t + t )

we find that

Uo-u20+nl--nt22+vv+2ll=0,

U2o--Uo+ nt -nt2 +v -v,, +2TI 2 0.
. . .. ..(17)

Hence

i.e., at the initial moment in time, the points on their orbits

and the center of gravity age located on a single line. Both

equations in (17) are the same equation which can be given the

form

t 2t2-nt lv,-v+l, l=1 +1.
(18)

The two last equations from the group of equations (1) are

equivalent to the following:

. -(19)
- - -7



We will call the Homann flyback a flyback whose orbits /47

"there" and "back" are Homann semi-ellipses.

Let
0= To r (1-x ),

where Th0--the duration of Homann flyback, Ths--time of stay in

orbit of destination for Homann flyback, KO0 ' s--small parameters,

smaller units in terms of the modulus. Now time limitations (3)

can be given the following form:

, -2t= T (l--xo), (20)
2t2= - T,. (1 -- ).

Consequently, a system is derived of 11 equations (15), (16),

(18), (19), (20) with 11 unknowns p, e, v, V u' tl' t2 T0' Ts
A, jt, v. The last three unknowns are auxiliary and we will not

derive them.

Four cases of equality to zero of the left parts of the two

last equations (15) are possible.

The first case: TO  s = 0. Equations (20) permit us to

find tl and t2 by the formulas

t- Tr (l-xo), t 2= - Trn (1-- x), (21)12=,T . .(21)

after which equations (16), (18), (19) form a system with the un-

knowns p, e, vi , vu . Its solution does not depend on the form

of function F.

8



The second case: TO = kV + n2X = 0. The orbit can be opti-

mal'if as a result of the solution we find that

2t+,T,(1-x.)<O. (22)

aF
The third case: s 

= k + n- + -- V = 0, can pro-

duce an optimal orbit if

2t +ro(1 o)>0. (23)

aF
And finally, the fourth case: kp + n1  + t v = ki +n 2 =

1t1
= 0, so that the orbit is optimal, we must have simultaneous ful-

fillment of inequalities (22) and (23).

In solution of the problem we will retain the following ana-

lytic form of function F:

F[1+x(1, 1-)l.f(A V1 A V 2, A V, AV4),j (24)

where the quantity K(t 4 - t1) is small in comparison with one

and thus, can be considered a small parameter.

If K = K0 = s = 0, all four cases merge into one. The

solution of the system is a Homann flyback. Let us write this so-

lution:
/48

- aa2 e a 2-a 1Po eo a 2 +a ao =- (at+a 2 ),

no=ka3/ 2, VHO= ' r ".

noo= o Po= o=0, v=-8 a0  (25)

Tro 2 (1l n )I - T 2

(-n2 n') / +1

nno

to = - Tro, t2o= - Trm,

AVI D= (-f 

A V20 - 0 i



Note.:

1. In this solution are contained additional quantities:

a0--semimajor axis of the flyback ellipse, n0--average motion al-

ong this ellipse, AV10 , AV20--first and second pulses.

2. Here and henceforth, where there are double values or

double signs, the top value and top sign will correspond to fly-
back from an internal orbit to the outside and back; the lower

value and sign will correspond to flyback .ftom the outside orbit

to the inside and back.

3. Examples: As examples, let us cite both types of Homann

flyback.

a) Homann flyback Earth--Mars--Earth (top values and top

signs). In the capacity of al, a2 we will select parameters of

the planetary orbits, and as mean motion nl and n2--the mean mo-

tion corresponding to these parameters, namely nl = kal 3/2 n2=
= ka- 3/2 Then2

al= 0,999720, nf =0,0172093,.
a2= 1,51040, n2=0,00926707.

For Homann flyback we find the following values:

Po= 1,20311, eo=0,203450, ao= 1,25506,
V0=0O, 40=o, no= 0 , 0122344 ,

V1o= 0,00166916 =2,89012 mM/ce,
aVo= 0,00150473=-2,60541 mtceI,

To= 982,991, Tr.=469d, 42 3, =1,-
,o--to 491d,4 9 6 , 3o= -t 2 0 234d 71 2

10



4e= -j a, (26)

and equations (18) and (19) can be written as

1 BVK--bv--n2 k-1(8)
n2-nl (27)

n 2-nI

Using formulas (2) and (26), we find that

... = (alav-a v) ± k o a a (28)

nF aF a2

In formulas (15) the partial derivatives and are multiplied
ap e

by values of the first order of smallness, and thus they themselves

can be calculated with consideration of the first order of small /50

values. Consequently,

2
OF =2(1 +To) (Of ) O (AV

i= O(2 9 )
2

OF =2(1+xTro)'( of ", V, )

DF
In turn, the partial derivative is sufficiently represented

as

dF
Sxfo.at, 1 (30)

Now, using formulas (15), (26), (29) and (30), we can derive

12



Ea=(l+xTo) -(f Vi )o-o 0-a2( a-AVi)o a-

a8a=eoia ((__T o "  ao avdee o (0a+- a a i )o (+A (

Sde OPaa1

6--aja 0 ( fo(Aiv# +a )K

( 31)

Case I. = Ts = O.

If time limitations of flyback and designation orbital stay

time are rigid, it may turn out that the optimum is flyback where

T0 = T = 0.
O s

Formulas (21) yield

l -Trox, r 2 rTux. (32)

Now, equations (27) may be written as

-------------------r--------gi)'Nv.-vn-To)( 3 3)

where /51
M, = (/ 1eo)3 2- (Ieo)2 VF- rM e0 , 4 K T '

(34)
13



S - ! eo (I Teo) 2-(1 ± eo)2V (Ie ' eo)2

(34)

while

S-- --- .-.. (35)

Let us designate the determinant of the system by DI . We can

derive that

4eo 1( -
e [(1 eo)32--(1 eo)3/2]. (36)

Let us present the correction of any quantity y: as

ay=B y+ *

and we will equate identical orders of small quantities of the

right and left in equations where these corrections appear. Then

for the ith order of magnitude 6v i and 6 vu, we derive the system.

(i) (i) th
where L1  , L2  are the i order of corresponding right sides.

The solution of this system will be

8,H= L '-- Ll),
D1 DI

- L+ L (37)

The first order is derived under the condition that

142 2



From formula (26) we see that for all cases of

and the first order of 61v i and 61 Vu permits us to calculate 62p

and 6 e according to the formulas

82p-= -pe1 - 6,V1-V 2)

e a ,(38)

The second and\:higher orders can be calculated according to sim- /52

pler formulas, since the right sides of the equations for these

orders acquire the following f6rm:

Therefore

avl.= (n2N,--n,M) D7 LcO,
B6,=(-Z 2NA nIM) D-'L' .

Calculations yield

2NO'-nIMK f2NH nlM __ 2

Therefore, for all subsequent orders we have

,vn= a,= "4eo 1-e L. 1 (39)

15



For the second order

L(2 = + e,2 ,,B _ al
8 n a, 2 (40)

Generally, L is the sum of terms of the i th order of magni-

tude of k- (61 ) , 62vi, 62 u permit us to calculate 63p and 63e

by the formulas

p= 2-2 (8142 1H2

6ae = -e2- 6142+ a 814,21) • ( 41)

Case II. = kP + n2 = 0.

The first equation (20) yields

-= Tr xo•. (42)

Then the first equation (27) and equation

. . - --. . " 0. .. ( 4 3 )

form a system with respect to 6vi and 6vu. Presenting in equations
V th

(27) and (43) a decomposition of (28) and (31) for the i order

of small quantities we find that

Y.8Iv. + Y,8v,, = xG(7,
(44)

where =(l eo) MA, o) MB,

A (3 eo) (I + eo)+4 }fT fo f Of

6B (a O " _( 3 eo)(I Teo)+4 eo.( Of)

16



x=+ 2 (eg) 4-2
k' 22po 1 (45)

The first equation of system (44) completely coincides with /53
th

the first equation of system (33) written for the it order of

magnitudes 6vi and 6v .

In G(i)are gathered all terms of the ith order of expression

kV + n2 A , taken with inverted signs, plus terms containing 6 v.

and 6 v , from which is formed the left side of the equation.

Let us assume that

> > 0 2, ) (46)

then the following inequalities are valid:

M. 0, M. O, YH.O, Yo , D , (47)

where D2 is the determinant of system (44). Let us remember that

the top signs of the inequalities are taken for flyback from the

inside orbit to the outside and back. Let us introduce the nota-

tions

XH xMHD-1, x.--xM,D, 
y. _ YD 2, x, = YD 2 .".YD.... ... (48)

Now the soJifutionof system (44) can be written as follows:

• =-VTyHL)x+G(O (49)

where xi > 0, xu > 0, yi > 0, yu > 0. The first order we derive

17



assuming that

(LO , -- oo, )),=0.

Because L1) +IL(1) when X0 > 0, then 61vi > 0, 61vu > 0.

When X0 < 0 we find that 6 v. < 0, 6 v < 0. The second formula

(27) produces

(n2-nl ) (NI.+N6
,(50)

When XO > 0 and 61t 2 > 0; when XO < 0, 61t2 < 0. At small XO,

a1ong with reducing the total time of flight, the stay in destina-

tion orbit also decreases and vice versa.

The second order is derived under the condition that

L1a 2 +  37c n2 eo ( a 2 
6V2__ al8IV

S [8 n e 2, 2 (1 -e -(I o)
3 /2

(2)
-2 no (I -e' AVio I3x 1--e.- 2 (--e,, )--(l3e23/ I Of > +

2 (1 -e 2)-(I (eo3 d
AV20 2 0 .a 1vl x

(51)

For 6 2t2 from (27) we derive

n2 n2-n (5 2)

.This case can yield an optimal orbit if /54

8t2< - Trnxn, (53)

where 6t 2 = 6 1 t 2 +662 2

Corrections for the parameter and eccentricity are calculated

for all cases using formulas (38) and (41).

18



Case III. kp + nl + v = = 0.
at

This case is completely analogous to the second, if everywhere

is replaced the first equation of (20) with the second and on the

other hand, equation (43) by the equation

k Fk+ /+ v=0- (54)

Consequently, we find that

i .... 
(55)

and the system

N8 V.+ NK8j IV=L

ZivH .+ ZIV =xH(', (56)

where

Z.=(1T e0) NRA, Z =--(leo) NB,

(57)

and H is derived by analogy with G from the lft side of

equation (54). Taking into account the assumption of (46), we

can show that

N0 N,0, ZO, Z,~O, Z 30, <O, (58)

where D3 is the determinant of system (56).

If we designate that

w,=x,,D-I, w,=xND1,

z.= +Z , z= T ZD (59)

19



then the solution of system (56) will appear as

OiV = Tz,,L+ ~wH(O,

(60)

wherein z>O, >O, .>O, >O.

To derive the first order we assume that

2 T,x,, ()=-8 fo1 (61)

If f0X > 0, then when Xs > 0 we yield 61vi > 0, Xs < 0--61vu < 0,

Ii (M Iv -,+Mia lv l).

(62)

Substituting in (62) 6 1 v i , 61Vu expressed with the aid of formulas/55

(6), we can be sure that when Xs > 0 and 61 tl > 0. That is, the

presence of an internal reserve of mass and the reduction in time

of orbital stay (destination orbit) reduce the total duration of

the flight. To derive the second order. we assume that

8o ( 8n. ,- no-w - e 'v- a /
(63)

H(2)= nl (2) +8 a' rxo (a vK .
n2o 2 o (ap-i ]fox. I

The first equation of (27) yields

\ t 1  (A4H 2 vH+A1K 2i'K 2 n2  L(4
12-n1 1n n2 -nl

20



This case can be an optimal orbit if the inequality is fulfilled

2t>-Tr° (65)

where 6t = t + 2tl

Case IV.

Necessary conditions of the minimum are

kp+njk + O a=0,

k +n24=0 (66)

can be represented in the form of a system of equations relative

to 6 vi , 6.vu. It appears that the system has the form

Y, pIYK U xOY.8!VH±YH9 iVK= xG(),

ZAv,,+ZEiv, xHY). (67)

Here .iall notations are as before.

For the determinant of this system D4, the calculations yield

the following expression:

DA=(1-e8) ABD,.
(68)

Considering (46), we yield D4  0. Let

=-xYDYH, T %=xYKD.,2
C ,= -xZ,D, C,=xZ(69)
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then the solution of system (67) will be

OiVOH -tKG(i)-~K(i ,

(70)

where ni > 0, nu > 0, Ci > 0, Cu > 0,

First Order /56
0(1)=0, H) _=--8 aS  ox.

(71)

If f0 K > 0, then 61v i > 0, 61 V > 0.

We derived from formula (27) that

S 6t ='(n-n)- 1 (M.'Iv-+MA1v), (72)

With these same assumptions 61 tl > 0, 1 2 > 0; consequently, there

is a reduction in both the total duration of the flight and the

destination orbit stay time.

Second Order

G(2) and H (2) are calculated according to formulas (51) and

(63). For 62t and 62t2 we find that

S 2tl (n .- I (2, v,, +M " -L )),
BA =(n 2- i(N,)' (A 4 J2Vu 1 2V-L 2)).

(73)

This case yields an optimal orbit if there is fulfillment simul-

taneously of two inequalities:

tl > T rx *

22t + Tr nfl.j



Selection of an Optimal Orbit

The optimal orbit should satisfy , above all, conditions (3)

with real TO and Ts. These conditions for the three last cases

are written as inequalities (53), (65), (74). The first case al-

ways yields an orbit which satisfies conditions (3), but it will

not always be an optimal orbit. An additional criterion of selec-

tion is the magnitude of function F, calculated in these orbits.

For this purpose, we will calculate d correction for the function

F, induced by deviation of the flyback orbit from Homann flyback.

Using the property of function F (5) and its form (24), we find

that 2
Y 

oF=xfo 2 a A2.- _... (75)1

Corrections for pulses can be found using formulas (4) and (26).

'(AV 8kVep 0 OT eo)
2 NSV B+(1e)2Nvj,(7

(76)

S(AV 2)= V f(2 eo)2 Mv +(1 eo) 2

Therefore, always /57

6F > 0,

if f 0 K > 0 and assumptions (46) are true.

If we are limited to the second order of small values, the

correction F, calculated by formula (75), is an additional cri-

terion for selecting the optimal orbit. The orbit for which 6F

is smallest is the optimal orbit.
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